Summary of Ontario reportable substances (O-REG 455/09) - 2017

Facility Operator IMPERIAL OIL Imperial Oil Sarnia Chemicals 602 South Christina Street, P.O. Box 3004 SARNIA, ON, N7T 7M5

Facility Owner Imperial Oil Limited 505 Quarry Park Blvd. S.E., P.O. Box 2480. Station "M" Calgary, Alberta T2P 3M9

Provincial regulations set out requirements for business owners to inform Ontarians about the use, creation and emissions of reportable substances in their communities. Under the Toxics Reduction Act (TRA), companies are required to post information quantifying these substances each year.

Substances are identified as "toxic" substances for the purposes of the Act if the substance is listed in the National Pollutant Release Inventory (NPRI). The NPRI is a federal database of emissions (to air, land and water) and waste transfers (on-site and offsite) and is available to the public on Environment Canada site (www.ec.gc.ca/inrp-npri). More information on the TRA is available at the Ontario Ministry of the Environment site (www.ene.gov.on.ca/environment/en/legislation/toxics reduction act/index.htm)

The Sarnia chemical plant produces a wide range of petrochemicals using refinery and external feedstocks. These products are then used to manufacture a number of widely used consumer products, such as plastics, in North America and around the world.

The notice below summarizes tracking and quantification of facility-wide quantities:

- Used: Amount of substance that enters the process. Includes amounts already present in raw materials or through addition of products required for processing.
- Created: Amount of substance produced during the processing stage.
- Contained in product: Amount of substance remaining after process is complete.
- Emissions: These are releases of substance from the facility to air, surface water or land; and, waste transfers (on-site and offsite).

Additional Facility Information

NPRI ID: 1464 MOE ID: 6840 Number of employees: 263 UTM NAD 83: 17N 385773.59 4756731.82

Starting with the 2011 reporting year, companies are required to report the year-over-year change in these reportable substances. The tables below report the amount of change between the previous year and the reporting year by showing the range and percentage difference. When comparing zero to an amount, the percentage of change is reported as not applicable (n/a). Positive/negative changes for the reporting year indicate an increase/decrease from the previous year.

A summary of reasons behind the change for each reportable substance is provided. The changes fall into the following categories:

- No reason no range change
- **New substance to report**: This substance was not reportable in previous year.
- System variability: There are many combined factors that result in system variability. Substances will vary depending on the feedstocks processed. Variability in operation can also affect the results. Analytical results have uncertainty, which can be increased when measuring low/trace levels.
- Change in production levels: Change resulted from an overall increase or decrease in production at the facility. This includes changes due to shut-down and maintenance activities.
- Improvement of data quality: Change resulted from continuous improvement of the quality of the data used to calculate the amount of substance.

Public Contact: Kristina Zimmer Public and Government Affairs Advisor 519-339-4015 NAICS 2 Code: 31-33 - Manufacturing NAICS 4 Code: 3251 - Basic Chemical Mfg. NAICS 6 Code: 325110 - Petrochemical Mfg.

				Report of Tracking and Quantification of Facility-Wide Quantities								
		Chemical Abstract		USED			CREATED		CON	TAINED IN PRODU	ІСТ	
	Substances (Reported in kilograms)	Service CAS Registry Number	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	Reason for Change
	Cadmium	**	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
als	Lead	**	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Met	Mercury	**	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
	Selenium	**	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
	7H-Dibenzo(c,g)carbazole	194-59-2	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
	Acenaphthene	83-32-9	>10,000 to 100,000	>10,000 to 100,000	74%	>10,000 to 100,000	>10,000 to 100,000	-68%	>10,000 to 100,000	>10,000 to 100,000	-19%	system variability
	Acenaphthylene	208-96-8	>100 to 1000	>10 to 100	45%	>10,000 to 100,000	>10,000 to 100,000	-38%	>10,000 to 100,000	>10,000 to 100,000	-37%	system variability
	Benzo(a)anthracene	56-55-3	0	0	n/a	>1000 to 10,000	>100 to 1000	91%	0	0	n/a	system variability
	Benzo(a)phenanthrene, aka chrysene	218-01-9	0	0	n/a	>1000 to 10,000	>100 to 1000	101%	0	0	n/a	system variability
PAH)	Benzo(a)pyrene	50-32-8	0	0	n/a	>1000 to 10,000	>100 to 1000	140%	0	0	n/a	system variability
ns (I	Benzo(b/j)fluoranthene	205-99-2 / 205-82-3	0	0	n/a	>1000 to 10,000	>100 to 1000	121%	0	0	n/a	system variability
arbo	Benzo(e)pyrene	192-97-2	0	0	n/a	>100 to 1000	>100 to 1000	195%	0	0	n/a	system variability
droc	Benzo(g,h,i)perylene	191-24-2	0	0	n/a	>100 to 1000	>10 to 100	214%	0	0	n/a	system variability
c Hy	Benzo(k)fluoranthene	207-08-9	0	0	n/a	>100 to 1000	>100 to 1000	157%	0	0	n/a	system variability
mati	Dibenzo(a,j)acridine	224-42-0	0	0	n/a	>0 to 1	>0 to 1	-10%	0	0	n/a	system variability
yaro	Dibenzo(a,i)pyrene	189-55-9	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Po	Fluoranthene	206-44-0	0	0	n/a	>1000 to 10,000	>1000 to 10,000	-47%	0	>1000 to 10,000	-100%	system variability
	Fluorene	86-73-7	>10,000 to 100,000	>10,000 to 100,000	66%	>10,000 to 100,000	>10,000 to 100,000	-31%	>10,000 to 100,000	>10,000 to 100,000	-26%	system variability
	Indeno(1,2,3-c,d)pyrene	193-39-5	0	0	n/a	>100 to 1000	>100 to 1000	181%	0	0	n/a	system variability
	Perylene	198-55-0	0	0	n/a	>100 to 1000	>10 to 100	141%	0	0	n/a	system variability
	Phenanthrene	85-01-8	>10,000 to 100,000	>10,000 to 100,000	75%	0	>1 to 10	-100%	>10,000 to 100,000	>10,000 to 100,000	-58%	system variability
	Pyrene	129-00-0	>1000 to 10,000	>1000 to 10,000	n/a	>10,000 to 100,000	>1000 to 10,000	-28%	>1000 to 10,000	>1000 to 10,000	-63%	system variability

					Repo	rt of Tracking and	Quantification of	Facility-Wide Qu	antities			
		Chemical Abstract		Used			Created		Co	ntained in Product		
	Substances (Reported in tonnes)	Service CAS Registry Number	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	Reason for Change
ú	Nickel	**	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Metals	Vanadium	7440-62-2	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
2	Zinc	**	>100 to 1000	>100 to 1000	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
PAF	Naphthalene	91-20-3	>1000 to 10,000	>100 to 1000	30%	>1000 to 10,000	>100 to 1000	28%	>1000 to 10,000	>100 to 1000	34%	system variability
	1, 2, 4-Trimethylbenzene *	95-63-6	>1000 to 10,000	>1000 to 10,000	6860%	>100 to 1000	>1000 to 10,000	-94%	>1000 to 10,000	>1000 to 10,000	-17%	system variability
	1, 3-Butadiene *	106-99-0	>1000 to 10,000	>100 to 1000	-14%	>10,000 to 100,000	>1000 to 10,000	32%	>10,000 to 100,000	>1000 to 10,000	19%	system variability
	Benzene *	71-43-2	>10,000 to 100,000	>10,000 to 100,000	-19%	>10,000 to 100,000	>1000 to 10,000	80%	>100,000 to 1,000,000	>100 to 1000	0%	system variability
	Biphenyl	92-52-4	>1000 to 10,000	>10 to 100	4%	0	0	n/a	0	0	n/a	system variability
	Butane *	**	>10,000 to 100,000	>1000 to 10,000	-2%	>100 to 1000	>10 to 100	-8%	>10,000 to 100,000	>1000 to 10,000	4%	system variability
	Butene *	25167-67-3	>10,000 to 100,000	>10,000 to 100,000	51%	>1000 to 10,000	>10,000 to 100,000	-86%	>10,000 to 100,000	>10,000 to 100,000	16%	system variability
	Cycloheptane *	**	>1000 to 10,000	>1000 to 10,000	90%	>1000 to 10,000	>100 to 1000	-9%	>1000 to 10,000	>100 to 1000	-13%	system variability
	Cyclohexane	110-82-7	>1000 to 10,000	>100 to 1000	-26%	>100 to 1000	>1 to 10	-1%	>1000 to 10,000	>100 to 1000	-30%	system variability
	Cyclooctane *	**	>1000 to 10,000	>1000 to 10,000	148%	>1000 to 10,000	>100 to 1000	36%	>1000 to 10,000	>100 to 1000	11%	system variability
	Decane *	**	>10,000 to 100,000	>1000 to 10,000	28%	>1000 to 10,000	>1000 to 10,000	-30%	>10,000 to 100,000	>100 to 1000	-3%	system variability
	Ethylbenzene	100-41-4	>1000 to 10,000	>1000 to 10,000	-34%	>100 to 1000	>100 to 1000	30%	>1000 to 10,000	>100 to 1000	-7%	system variability
carbons	Ethylene *	74-85-1	>10,000 to 100,000	>10,000 to 100,000	36%	>100,000 to 1,000,000	>1000 to 10,000	-3%	>1000 to 10,000	>100 to 1000	-16%	system variability
ocarl	Heptane *	**	>10,000 to 100,000	>10,000 to 100,000	231%	>1000 to 10,000	>100 to 1000	39%	>10,000 to 100,000	>100 to 1000	1%	system variability
Hydro	Hexane *	**	>100,000 to 1,000,000	>10,000 to 100,000	-23%	>1000 to 10,000	>100 to 1000	12%	>100,000 to 1,000,000	>10,000 to 100,000	-18%	system variability
-	Hexene *	25264-93-1	>1000 to 10,000	>1000 to 10,000	-17%	>10,000 to 100,000	>1000 to 10,000	21%	>10,000 to 100,000	>1000 to 10,000	15%	system variability
	Isoprene	78-79-5	0	>10 to 100	-100%	>1000 to 10,000	>100 to 1000	66%	>1000 to 10,000	>100 to 1000	63%	system variability
	n-Hexane *	110-54-3	>10,000 to 100,000	>1000 to 10,000	13%	>1000 to 10,000	>100 to 1000	9%	>10,000 to 100,000	>1000 to 10,000	-12%	system variability
	Nonane *	**	>1000 to 10,000	>1000 to 10,000	-13%	>10,000 to 100,000	>100 to 1000	-4%	>10,000 to 100,000	>1000 to 10,000	-13%	system variability
	Octane *	**	>1000 to 10,000	>1000 to 10,000	229%	>1000 to 10,000	>100 to 1000	-9%	>1000 to 10,000	>1000 to 10,000	-30%	system variability
	Pentane *	**	>10,000 to 100,000	>10,000 to 100,000	-16%	>10 to 100	>10 to 100	-84%	>10,000 to 100,000	>1000 to 10,000	-8%	system variability
	Pentene *	**	>1000 to 10,000	>100 to 1000	6%	>10,000 to 100,000	>1000 to 10,000	62%	>10,000 to 100,000	>1000 to 10,000	43%	system variability
	Propane *	74-98-6	>100,000 to 1,000,000	>10,000 to 100,000	-8%	>10 to 100	>1000 to 10,000	-99%	>1000 to 10,000	>100 to 1000	10%	system variability
	Propylene *	115-07-1	>10,000 to 100,000	>1000 to 10,000	-3%	>0 to 1	>0 to 1	-100%	>100 to 1000	>1 to 10	-2%	system variability
	Toluene *	108-88-3	>10,000 to 100,000	>1000 to 10,000	13%	>1000 to 10,000	>10 to 100	-1%	>10,000 to 100,000	>1000 to 10,000	17%	system variability
	Xylene *	1330-20-7	>10,000 to 100,000	>10,000 to 100,000	185%	>1000 to 10,000	>1000 to 10,000	-29%	>10,000 to 100,000	>100 to 1000	-4%	system variability

	Report of Tracking and Quantification of Facility-Wide Quantities										
Substances	Chemical Abstract		Used			Created		Co	ntained in Product		
Substances (Reported in tonnes)	Service CAS Registry Number	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	Reason for Change
Ammonia	**	0	0	n/a	>100 to 1000	>1 to 10	5%	>100 to 1000	>1 to 10	5%	no reasons - quantities approximately the sa
Asbestos	1332-21-4	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Carbon Monoxide	630-08-0	0	0	n/a	>100 to 1000	>10 to 100	9%	0	0	n/a	no reasons - quantities approximately the sa
Cresol	1319-77-3	0	0	n/a	>100 to 1000	>10 to 100	-17%	>0 to 1	>10 to 100	-100%	system variability
Ethylene Glycol	107-21-1	>10 to 100	>0 to 1	1%	0	0	n/a	0	0	n/a	system variability
Formaldehyde *	50-00-0	0	0	n/a	>0 to 1	>0 to 1	140%	0	0	n/a	system variability
H2S	7783-06-4	>10,000 to 100,000	>1000 to 10,000	21%	>1000 to 10,000	>1000 to 10,000	-68%	>10,000 to 100,000	>1000 to 10,000	-12%	system variability
Hydrogen cyanide	74-90-8	0	0	n/a	>0 to 1	>0 to 1	-36%	>0 to 1	>0 to 1	-36%	system variability
Methanol *	67-56-1	>10 to 100	>1 to 10	-9%	0	0	n/a	0	0	n/a	no reasons - quantities approximately the sa
Isopropyl alcohol	67-63-0	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the sam
Molybdenum Trioxide	1313-27-5	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Nitrate Ion	**	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Nox	11104-93-1	0	0	n/a	>100 to 1000	>10 to 100	-10%	0	0	n/a	system variability
Particulates	**	0	0	n/a	>10 to 100	>1 to 10	11%	0	0	n/a	system variability
Phenol (and its salts)	108-95-2	>100 to 1000	>10 to 100	24%	0	0	n/a	0	>0 to 1	-100%	system variability
PM10	**	0	0	n/a	>10 to 100	>1 to 10	10%	0	0	n/a	system variability
PM2.5	**	0	0	n/a	>10 to 100	>1 to 10	11%	0	0	n/a	system variability
Sulphur Dioxide	7446-09-5	0	0	n/a	>100 to 1000	>100 to 1000	856%	0	0	n/a	system variability
Sulphuric acid	7664-93-9	>0 to 1	>0 to 1	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Fetrahydrofuran *	109-99-9	>10 to 100	>10 to 100	-23%	0	0	n/a	0	0	n/a	system variability
Total Reduced Sulphur	**	>10,000 to 100,000	>1000 to 10,000	-10%	>1000 to 10,000	>1000 to 10,000	-67%	>10,000 to 100,000	>1000 to 10,000	-12%	system variability
Volatile Organic Compounds	**	>1,000,000	>10,000 to 100,000	6%	>100,000 to 1,000,000	>10,000 to 100,000	-12%	>100,000 to 1,000,000	>10,000 to 100,000	-2%	system variability

	Report of Tracking and Quantification of Facility-Wide Quantities															
		Releases To Air			Releases to Water			Releases to Land		o	Onsite / OffsiteDisposal		Transfe	r for Treatment and Recyc	cling	
Substances (Reported in kilograms)	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	2017 (kilograms)	DELTA vs. 2016 (kilograms)	% CHANGE	Reason for Change
Cadmium	3	0	-3%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	-8%	system variability
under Lead	9	0	-3%	0	0	n/a	0	0	n/a	2	2	12276%	5	0	-8%	system variability
Mercury	0	0	-3%	0	0	n/a	0	0	n/a	1	1	56291%	0	0	n/a	system variability
Selenium	2	0	-3%	0	0	n/a	0	0	n/a	0	0	-100%	0	0	-8%	system variability
7H-Dibenzo(c,g)carbazole	0	0	-15%	0	0	n/a	0	0	n/a	1	-1	-53%	7	0	-1%	system variability
Acenaphthene	1	1	380%	0	0	n/a	0	0	n/a	705	-398	-36%	7391	1863	34%	system variability
Acenaphthylene	3	3	964%	0	0	n/a	0	0	n/a	2319	-2715	-54%	24306	-929	-4%	system variability
Benzo(a)anthracene	0	0	345%	0	0	n/a	0	0	n/a	156	0	0%	1637	856	110%	system variability
Benzo(a)phenanthrene, aka chrysene	0	0	1921%	0	0	n/a	0	0	n/a	111	6	5%	1166	637	120%	system variability
Benzo(a)pyrene	0	0	1659%	0	0	n/a	0	0	n/a	90	18	26%	947	587	163%	system variability
Benzo(b/j)fluoranthene	0	0	452%	0	0	n/a	0	0	n/a	114	15	16%	1191	698	142%	system variability
Benzo(e)pyrene	67	67	1184750%	0	0	n/a	0	0	n/a	46	12	37%	481	313	186%	system variability
Benzo(g,h,i)perylene	0	0	-100%	0	0	n/a	0	0	n/a	12	5	64%	124	88	244%	system variability
Benzo(k)fluoranthene	0	0	-37%	0	0	n/a	0	0	n/a	16	4	34%	164	105	181%	system variability
Dibenzo(a,i)pyrene	0	0	-15%	0	0	n/a	0	0	n/a	1	-1	-53%	7	0	-1%	system variability
Dibenzo(a,j)acridine	0	0	-15%	0	0	n/a	0	0	n/a	1	-1	-53%	7	0	-1%	system variability
Fluoranthene	0	0	-100%	0	0	n/a	0	0	n/a	440	-15	-3%	4613	2330	102%	system variability
Fluorene	3	2	631%	0	0	n/a	0	0	n/a	1657	-741	-31%	17362	5345	44%	system variability
Indeno(1,2,3-c,d)pyrene	0	0	-50%	0	0	n/a	0	0	n/a	19	6	47%	203	137	208%	system variability
Perylene	0	0	-100%	0	0	n/a	0	0	n/a	10	2	26%	105	65	164%	system variability
Phenanthrene	4	4	728%	0	0	n/a	0	0	n/a	2982	-734	-20%	31251	12625	68%	system variability
Pyrene	1	1	1111%	0	0	n/a	0	0	n/a	975	-140	-13%	10219	4631	83%	system variability

	Report of Tracking and Quantification of Facility-Wide Quantities															
		Releases To Air			Releases to Water			Releases to Land		O	nsite / OffsiteDisposal		Transfer for Treatmen	nt and Recycling		
Substances (Reported in tonnes)	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	2017 (tonnes)	DELTA vs. 2016 (tonnes)	% CHANGE	Reason for Change
Nickel	0	0	-3%	0	0	n/a	0	0	n/a	1	-4	-73%	0	0	-8%	system variability
Vanadium	0	0	n/a	0	0	n/a	0	0	n/a	0	0	-100%	0	0	-8%	system variability
Zinc	0	0	-3%	0	0	0%	0	0	n/a	0	0	-100%	0	0	-8%	system variability
Naphthalene	0	0	27%	0	0	n/a	0	0	n/a	9	-10	-52%	97	1	1%	system variability
1, 2, 4-Trimethylbenzene *	4	0	-2%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
1, 3-Butadiene *	0	0	-44%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Benzene *	4	0	8%	0	0	n/a	0	0	n/a	1	1	1011667%	0	0	n/a	system variability
Biphenyl	0	0	18%	0	0	n/a	0	0	n/a	0	-1	-100%	0	0	n/a	system variability
Butane *	13	11	758%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Butene *	3	2	118%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Cycloheptane *	0	0	64%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Cyclohexane	0	-1	-89%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Cyclooctane *	0	0	106%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Decane *	1	0	6%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Ethylbenzene	1	0	-3%	0	0	n/a	0	0	n/a	0	0	1010676%	0	0	n/a	system variability
Ethylene *	43	-12	-22%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Heptane *	1	-1	-39%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Hexane *	8	0	-1%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Hexene *	2	0	-11%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Isoprene	0	0	393%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
n-Hexane *	0	-7	-100%	0	0	n/a	0	0	n/a	1	1	n/a	0	0	n/a	system variability
Nonane *	3	0	12%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Octane *	1	0	0%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Pentane *	8	-2	-24%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Pentene *	0	0	572%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Propane *	41	12	41%	0	0	n/a	0	0	n/a	0	0	-29%	0	0	n/a	system variability
Propylene *	20	-2	-9%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Toluene *	4	-1	-23%	0	0	n/a	0	0	n/a	2	2	2174666%	0	0	n/a	system variability
Xylene *	3	0	1%	0	0	n/a	0	0	n/a	1	-1	-53%	10	0	-1%	system variability
Ammonia	0	0	-3%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Asbestos	0	0	n/a	0	0	n/a	0	0	n/a	2	1	30%	0	0	n/a	system variability
Carbon Monoxide	473	38	9%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Cresol	0	, , , , , , , , , , , , , , , , , , ,	-50%	0	0	n/a	-	Ŷ	n/a			n/a	0		n/a	no reasons - quantities approximately the same
Ethylene Glycol	0	0	n/a	0	0	n/a	0	0	n/a	0	-1 0	-100%	0	0	n/a	system variability
Formaldehyde * H2S	1	0	-3% 4%	0	0	n/a n/a	0	0	n/a n/a	0 4	4	n/a 6719%	0	0	n/a n/a	system variability system variability
H2S Hydrogen cyanide	0	0	-3%	0	0	n/a n/a	0	0	n/a n/a	0	4	n/a	0	0	n/a n/a	no reasons - quantities approximately the same
Methanol *	0	0	-3%	0	0	n/a	0	0	n/a	0	0	n/a n/a	0	0	n/a	system variability
Isopropyl alcohol	0	-	-2%	0	-	n/a	0	-	n/a	0	-	n/a n/a	0	-	n/a	no reasons - quantities approximately the same
Molybdenum Trioxide	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Nitrate Ion	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Nox	420	-44	-10%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Particulates	20	2	11%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Phenol (and its salts)	0	0	-3%	0	0	-1%	0	0	n/a	0	0	-100%	0	0	n/a	system variability
PM10	13	1	10%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
PM2.5	10	1	11%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Sulphur Dioxide	112	100	856%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Sulphuric acid	2	0	25%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	no reasons - quantities approximately the same
Tetrahydrofuran *	5	2	100%	0	0	n/a	0	0	n/a	0	0	n/a	0	0	n/a	system variability
Total Reduced Sulphur	2	0	0%	0	0	n/a	0	0	n/a	4	4	6719%	0	0	n/a	system variability
Volatile Organic Compounds	164	10	6%	0	0	n/a	0	0	n/a	4	2	96%	10	0	-1%	system variability

** No single CAS number applies to this substance

* also included in Volatile Organic Compounds

Toxic Reduction	Plan Stewardship - 2017 Reporting Year					
Substances	Plan Objectives and Targets	Summary of steps taken during the previous calendar year (2017) to implement the toxics reduction options identified in the plan and the reduction amount resulting from these steps	Comparison of steps taken during the previous calendar year (2017) to steps included in the plan		Additional actions taken during the previous calendar year (2017) to achieve the plan's objectives and the reduction amount resulting from the additional actions	Amendments made to the plan during the previous calendar year (2017)
Cadmium	Cadmium (and its compounds) enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Lead	Lead enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Mercury	Mercury enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Selenium	Selenium enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Nickel	Nickel enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Vanadium	Vanadium enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Zinc	Zinc enters the facility at concentrations in the chemcial plant feedstock that are below the measurement detection limit and is not created at the facility. No reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
7H-Dibenzo(c,g)carbazole	7H-Dibenzo(c,g)carbazole is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Acenaphthene	Acenaphthene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Acenaphthylene	Acenaphthylene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzo(a)anthracene	Benzo(a)anthracene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzo(a)phenanthrene, aka chrysene	Benzo(a)phenanthrene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzo(a)pyrene	Benzo(a)pyrene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzo(b/j)fluoranthene	Benzo(b/j)fluoranthene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzo(e)pyrene	cracking processes. No reasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzo(g,h,i)perylene	Benzo(g,h,i)perylene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
, Benzo(k)fluoranthene	Benzo(k)fluoranthene is created at the facility in the conversion units through cracking processes. Sarnia chemical plant is targeting to reduce the amount of Benzo(k)fluoranthene byproduct leaving the site for treatment / recyling by approximately 33 kg.	Facility upgrades in the chemical plant are progressing but completion of the upgrades have been delayed beyond the original reduction plan timeline. Reductions will be achieved when the facility upgrades are complete.	No change	Reduction plan timeline will not be met	No additional actions	No amendments
Dibenzo(a,h)anthracene	byproduct leaving the site for treatment / recyling by approximately 15 kg.	Facility upgrades in the chemical plant are progressing but completion of the upgrades have been delayed beyond the original reduction plan timeline. Reductions will be achieved when the facility upgrades are complete.		Reduction plan timeline will not be met	No additional actions	No amendments
Dibenzo(a,i)pyrene	Benzo(a,i)pyrene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Dibenzo(a,j)acridine	Benzo(a,i)pyrene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Fluoranthene	Fluoranthene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments

Fluorene	Fluorene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-c,d)pyrene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Naphthalene	Naphthalene is a component of the chemical plant feedstocks. There is both creation and destruction of naphthalene occurring in the chemical plant conversion processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Perylene	Perylene is created at the facility in the conversion units through cracking processes. Sarnia chemical plant is targeting to reduce the amount of Perylene byproduct leaving the site for treatment / recyling by approximately 20 kg.	Facility upgrades in the chemical plant are progressing but completion of the upgrades have been delayed beyond the original reduction plan timeline. Reductions will be achieved when the facility upgrades are complete.		Reduction plan timeline will not be met	No additional actions	No amendments
Phenanthrene	Phenanthrene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Pyrene	Pyrene is created at the facility in small concentrations in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments

	Plan Stewardship - 2017 Reporting Year				Additional actions taken during the	
Substances	Plan Objectives and Targets	Summary of steps taken during the previous calendar year (2017) to implement the toxics reduction options identified in the plan and the reduction amount resulting from these steps	Comparison of steps taken during the previous calendar year (2017) to steps included in the plan		Additional actions taken during the previous calendar year (2017) to achieve the plan's objectives and the reduction amount resulting from the additional actions	Amendments made to the plan during the previous calendar year (2017)
1, 2, 4-Trimethylbenzene	1,2,4-Trimethylbenzene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. Sarnia Chemcial plant is targeting to reduce the use of 1,2,4 Trimethylbenzene in unit feedstock by approximately 1.4 tonne.	Reduced the use of a 1,2,4 Trimethylbenzene containing feedstock to one chemical plant unit per the documented reduction plan.	No change	Reduction plan timeline met.	No additional actions	No amendments
1, 3-Butadiene	1,3-Butadiene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified. However, various projects at Sarnia Chemical Plant are expected to reduce the fugitive emissions of 1, 3-Butadiene in the coming years. These projects include but are not limited to tank upgrades and improvements to the fugitive emission monitoring program.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Benzene	Benzene is integral to the chemical plant operation and is contained in desired chemical feedstock and/or products, therefore no options to reduce the use or creation of benzene were identified. However, various projects at Sarnia Chemical Plant are expected to reduce the fugitive emissions of benzene in the coming years. These projects include but are not limited to tank upgrades and improvements to the fugitive emission monitoring program.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Biphenyl	Biphenyl enters the chemical plant in unit feedstock and is destroyed at the facility in the conversion unit through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Butane	Butane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Butene	Butene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Cycloheptane	Cycloheptane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Cyclohexane	Cyclohexane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Cyclohexene	Cyclohexene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Cyclooctane	Cyclooctane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Decane	Decane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Dicyclopentadiene	Dicyclopentadiene enters the chemical plant in desired feedstock. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Ethylbenzene	Ethylbenzene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Ethylene	Ethylene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. Sarnia Chemical plant is targeting to reduce the amount of ethylene released to the air in one of its operating units by approximately 2.8 tonnes.	Option #1: Facilities upgrades completed, procedure changes and operator training completed per documented reduction plan. Planned reduction was achieved. Option #2: Procedure changes and operator training completed per documented reduction plan and planned reduction was achieved.	No change	Reduction plan timeline met.	No additional actions	No amendments
Heptane	Heptane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Hexane	Hexane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Hexene	Hexene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments

Isoprene	Isoprene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments
n-Hexane	n-Hexane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments
Nonane	Nonane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments
Octane	Octane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments
Pentane	Pentane enters the chemical plant in various feedstocks and is created & destroyed at the facility in the conversion units through cracking processes. Sarnia Chemical plant is targeting to reduce the amount of pentane used at one of its operating units by approximately 135 tonnes. Sarnia Chemical plant is targeting to reduce the amount of pentane land is targeting to reduce the amount of pentane variately 0.7 tonnes.	<u>Option #1</u> : Facility upgrades in the chemical plant are progressing but completion of the upgrades have been delayed beyond the original reduction plan timeline. Reductions will be achieved when the facility upgrades are complete. <u>Option #2</u> : Procedure changes and operator training completed per documented reduction plan and planned reduction was achieved.	No change	Reduction plan timeline will not be met.	No amendments
Pentene	Pentene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments
Propane	Propane enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments
Propylene	Propylene enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan No additional actions	No amendments

Toxic Reduction Plan Stewardship - 2017 Reporting Year

Substances	Plan Objectives and Targets	Summary of steps taken during the previous calendar year (2017) to implement the toxics reduction options identified in the plan and the reduction amount resulting from these steps	Comparison of steps taken during the previous calendar year (2017) to steps included in the plan	Indication of whether timeline(s) set out in plan will be met	Additional actions taken during the previous calendar year (2017) to achieve the plan's objectives and the reduction amount resulting from the additional actions	Amendments made to the plan during the previous calendar year (2017)
Toluene	Toluene is integral to the chemical plant operation and is contained in desired chemical feedstock and/or products, therefore no options to reduce the use or creation of toluene were identified. However, various projects at Sarnia Chemical Plant are expected to reduce the fugitive emissions of toluene in the coming years. These projects include but are not limited to tank upgrades and improvements to the fugitive emission monitoring program.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Soloff Xylene	Xylene is integral to the chemical plant operation and is contained in desired chemical feedstock and/or products, therefore no options to reduce the use or creation of xylene were identified. However, various projects at Sarnia Chemical Plant are expected to reduce the fugitive emissions of xylene in the coming years. These projects include but are not limited to tank upgrades and improvements to the fugitive emission monitoring program.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Ammonia	Ammonia is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Asbestos	Asbestos (friable form only) currently exists at the facility as a result of historical use and no new asbestos (friable form only) enters the chemical plant. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Carbon Monoxide	Carbon Monoxide may be created as a byproduct of fuel combustion. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Cresol	Cresol is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Ethylene Glycol	Ethylene Glycol is used at the Sarnia Chemical plant in purchased additive. The additive is optimized for the facility's operating envelope and product market demand. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Formaldehyde	Formaldehyde may be created as a byproduct of fuel combustion and was not detected in measurable concentrations in any of the chemcial plant inputs or outputs. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
H2S	H2S enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Hydrogen cyanide	Hydrogen Cyanide is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Methanol	Methanol is used as an antifreeze for the chemical plant process equipment. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments

Isopropyl alcohol	Isopropyl alcohol may be found in process chemical additives. It is not contained in any chemical plant feedstocks and is not created at the facility. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Molybdenum Trioxide	Molybdenum Trioxide may be found in catalyst. It is not contained in any chemical plant feedstocks and is not created at the facility. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Nitrate Ion	Nitrate lon may be a byproduct of biological oxidation of ammonia containing streams at wastewater treatment plant. It is not contained in any chemical plant feedstocks and is not created at the facility. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Nox	Nox (mono-nitrogen oxides) are produced from the reaction of nitrogen and oxygen gases in the air during combustion at thigh temperatures. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Particulates	Particulates are fines that are not fully combused or recovered in the process. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Phenol (and its salts)	Phenol (and its salts) is contained in an additive that is used within the polyethylene plant and is transformed during processing. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
PM10	LODIONS WERE IDENTIFIED.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
PM2.5	PM2.5 are fines that are not fully combused or recovered in the process. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Sulphur Dioxide	Sulphur Dioxide is created in the combustion of fuel containing sulphur. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Sulphuric acid	Sulphuric acid is used as an additive to the facility's clean water impounding basin and is transformed into a neutral salt. Sulphuric acid is also created as a byproduct from combustion of fuel containing traces of sulphur. Sarnia chemical plant is targeting to reduce the use of sulphuric acid by 1.0 tonnes.	Reduced the use of this toxin at the chemical plant, reduction was achieved per documented plan.	No change	Reduction plan timeline met.	No additional actions	No amendments
Tetrahydrofuran	Tetrahydrofuran is used as a feedstock in the preparation of chemical plant catalyst and is detroyed through unit processing. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Total Reduced Sulphur	Totatl Reduced Sulphur enters the chemical plant in various feedstocks and is created at the facility in the conversion units through cracking processes. No feasible reduction options were identified.	No steps	No change	Not applicable - no timeline in plan	No additional actions	No amendments
Volatile Organic Compounds	Not applicable - no plans required for VOC's as a group (O. Reg 455/09 S.11)	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable

Report Submission and Electronic Certification

NPRI - Electronic Statement of Certification

Specify the language of correspondence

English

Comments (optional)

I hereby certify that I have exercised due diligence to ensure that the submitted information is true and complete. The amounts and values for the facility(ies) identified below are accurate, based on reasonable estimates using available data. The data for the facility(ies) that I represent are hereby submitted to the programs identified below using the Single Window Reporting Application.

I also acknowledge that the data will be made public.

Note: Only the person identified as the Certifying Official or the authorized delegate should submit the report(s) identified below.

Company Name

Imperial Oil

Certifying Official (or authorized delegate)

James Ritchie

Report Submitted by

James Ritchie

I, the Certifying Official or authorized delegate, agree with the statements above and acknowledge that by pressing the "Submit Report(s)" button, I am electronically certifying and submitting the facility report(s) for the identified company to its affiliated programs.

ON MOE TRA - Electronic Certification Statement

Annual Report Certification Statement

As of 31/05/2018, I, James Ritchie, certify that I have read the reports on the toxic substance reduction plans for the toxic substances referred to below and am familiar with their contents, and to my knowledge the information contained in the reports is factually accurate and the reports comply with the Toxics Reduction Act, 2009 and Ontario Regulation 455/09 (General) made under that Act.

TRA Substance List

CAS RN	Substance Name
95-63-6	1,2,4-Trimethylbenzene

106-99-0	1,3-Butadiene	
194-59-2	7H-Dibenzo(c,g)carbazole	
83-32-9	Acenaphthene	
208-96-8	Acenaphthylene	
NA - 16	Ammonia (total)	
1332-21-4	Asbestos (friable form only)	
71-43-2	Benzene	
56-55-3	Benzo(a)anthracene	
218-01-9	Benzo(a)phenanthrene	
50-32-8	Benzo(a)pyrene	
205-99-2	Benzo(b)fluoranthene	
192-97-2	Benzo(e)pyrene	
191-24-2	Benzo(g,h,i)perylene	
205-82-3	Benzo(j)fluoranthene	
207-08-9	Benzo(k)fluoranthene	
92-52-4	Biphenyl	
NA - 24	Butane (all isomers)	

25167-67-3	Butene (all isomers)
NA - 03	Cadmium (and its compounds)
630-08-0	Carbon monoxide
1319-77-3	Cresol (all isomers, and their salts)
NA - 25	Cycloheptane (all isomers)
110-82-7	Cyclohexane
NA - 27	Cyclooctane (all isomers)
NA - 28	Decane (all isomers)
53-70-3	Dibenzo(a,h)anthracene
189-55-9	Dibenzo(a,i)pyrene
224-42-0	Dibenzo(a,j)acridine
100-41-4	Ethylbenzene
74-85-1	Ethylene
107-21-1	Ethylene glycol
206-44-0	Fluoranthene
86-73-7	Fluorene
50-00-0	Formaldehyde

NA - 31	Heptane (all isomers)
NA - 32	Hexane (all isomers excluding n-hexane)
25264-93-1	Hexene (all isomers)
74-90-8	Hydrogen cyanide
7783-06-4	Hydrogen sulphide
193-39-5	Indeno(1,2,3-c,d)pyrene
78-79-5	Isoprene
NA - 08	Lead (and its compounds)
NA - 10	Mercury (and its compounds)
67-56-1	Methanol
1313-27-5	Molybdenum trioxide
91-20-3	Naphthalene
110-54-3	n-Hexane
NA - 11	Nickel (and its compounds)
NA - 17	Nitrate ion in solution at pH \geq 6.0
11104-93-1	Nitrogen oxides (expressed as NO2)
NA - 33	Nonane (all isomers)

NA - 34	Octane (all isomers)
NA - 35	Pentane (all isomers)
NA - 36	Pentene (all isomers)
198-55-0	Perylene
85-01-8	Phenanthrene
108-95-2	Phenol (and its salts)
NA - M09	PM10 - Particulate Matter
NA - M10	PM2.5 - Particulate Matter
115-07-1	Propylene
129-00-0	Pyrene
NA - 12	Selenium (and its compounds)
7446-09-5	Sulphur dioxide
7664-93-9	Sulphuric acid
108-88-3	Toluene
NA - M08	Total Particulate Matter
NA - M14	Total reduced sulphur (expressed as hydrogen sulphide)
7440-62-2	Vanadium (and its compounds)

1330-20-7	Xylene (all isomers)	
NA - 14	Zinc (and its compounds)	
Exit Record Certification Statement		
TRA Exit Record Substances		
CAS RN	Substance Name	
77-73-6	Dicyclopentadiene	
67-63-0	Isopropyl alcohol	
120-12-7	Anthracene	
Company Name		
Imperial Oil		
Highest Ranking Employee		
James Ritchie		
Report Submitted by		
James Ritchie		
Website address		

I, the highest ranking employee, agree with the certification statement(s) above and acknowledge that by checking the box I am electronically signing the statement(s). I also acknowledge that by pressing the 'Submit Report(s)' button I am submitting the facility record(s)/report(s) for the identified facility to the Director under the Toxics Reduction Act, 2009. I also acknowledge that the Toxics Reduction Act, 2009 and Ontario Regulation 455/09 provide the authority to the Director under the Act to make certain information as specified in subsection 27(5) of Ontario Regulation 455/09 available to the public.

Submitted Report

Period	Submission Date	Facility Name	Province	City	Programs
2017	31/05/2018	Sarnia Chemical Plant	Ontario	Sarnia	NPRI,ON MOE TRA,NERM

Note: If there is a change in the contact information for the facility, a change in the owner or operator of the facility, if operations at the facility are terminated, or if information submitted for any previous year was mistaken or inaccurate, please update this information through SWIM or by contacting the National Pollutant Release Inventory directly.